# Table of Contents

Overview ........................................................................................................................................................................... 02
The Science Behind UBM .................................................................................................................................................. 03
Economic Impact ................................................................................................................................................................. 04
Application Guidelines ....................................................................................................................................................... 05

## Clinical Case Examples

- Case Study 1: Hidradenitis Suppurativa ......................................................................................................................... 07
- Case Study 2: Open Abdomen ........................................................................................................................................... 08
- Case Study 3: Open Abdomen Resulting from Necrotizing Soft Tissue Infection (NSTI) ............................................ 09
- Case Study 4: Necrotizing Soft Tissue Infection (NSTI) ................................................................................................. 10
- Case Study 5: Fournier’s Gangrene ............................................................................................................................... 11
- Case Study 6: Sacral Pressure Ulcer ............................................................................................................................. 12
- Case Study 7: Pressure Ulcer of the Thigh .................................................................................................................... 13
- Case Study 8: Pilonidal Cyst ............................................................................................................................................ 14

References ........................................................................................................................................................................... 15
Indications, Contraindications, Warnings and Precautions ............................................................................................... 15
Ordering Information .......................................................................................................................................................... BACK COVER
WHEN MANAGING CHALLENGING WOUNDS, RAPID TISSUE FORMATION IS KEY

Cytal® Wound Matrix and MicroMatrix® UBM Particulate are proven to facilitate rapid tissue formation in complex wounds.

MicroMatrix® Provides Quick Wound Modification to Support Healing

MicroMatrix supports quick resorption and wound modification through a favorable interaction with the wound environment so that wound closure can be achieved.1-3

MicroMatrix (Particulate)
- Provides intimate contact with the wound bed
- Flexibility for coverage over irregular wound beds and tunneling wounds
- Can be made into a paste to allow for simpler application in undermining wounds

Cytal® Addresses Challenging Wound Microenvironments

Cytal Wound Matrix facilitates a favorable environment for wound closure.1-3 When a difficult wound microenvironment limits treatment options, Cytal provides a solution that enables a shift from an inflammatory wound environment into one that facilitates cellular infiltration and fast formation of site-appropriate, vascularized tissue.2,4-7

Cytal Wound Matrix (Sheet)
- Highly conformable in irregular wound beds
- Pre-fenestrated to support effective fluid management and wound drainage
- Multiple layering configurations allow for tailored wound management

Addressing Wound Management Challenges in High-Risk Soft Tissue Injuries

1 Soft Tissue Loss
Complex wounds can result in detrimental soft tissue loss, leading to challenges in wound management. MicroMatrix and Cytal are specifically designed for the management of full-thickness complex wounds.

2 Avascular Structures
Avascular structures are especially difficult to manage due to the lack of blood flow to the area. MicroMatrix and Cytal have facilitated the formation of vascular tissue over avascular structures.8-10

3 Contaminated Wounds
Soft tissue injuries are often contaminated, resulting in delay of reconstruction and increased tissue loss. In contaminated wounds that have been cleaned and/or debrided, MicroMatrix and Cytal have facilitated successful wound management.8-10

4 Coverage Over Irregular Wounds
The MicroMatrix particulate offers a wound management option for irregular, tunneled, and undermined wounds, while Cytal sheets are conformable and provide contact with all areas of the wound.
THE SCIENCE BEHIND UBM: OVER 200 PRE-CLINICAL AND CLINICAL PUBLICATIONS AND 10+ YEARS IN THE MARKETPLACE

Cytal Wound Matrix and MicroMatrix UBM Particulate are extracellular matrices (ECMs) derived from porcine urinary bladder matrix (UBM). Integra’s UBM devices are decellularized, non-crosslinked, and completely resorbable.

**Epithelial basement membrane**
The epithelial basement membrane may contribute to cell attachment

**Lamina propria**
The lamina propria is an open porous surface that allows for cellular infiltration and capillary ingrowth

WHAT ARE MACROPHAGES AND WHY DO THEY MATTER?

Macrophages are recognized as primary regulators of wound healing and have 2 main phenotypes: **M1 and M2**

A lower M1:M2 ratio has been associated with site-appropriate tissue remodeling, whereas a higher M1 response is associated with an encapsulation or integration response.²

**SUPPORT A SHIFT IN THE INFLAMMATION RESPONSE**

• Cytal and MicroMatrix provide an environment where the body is more likely to exhibit a higher ratio of M2 (pro-remodeling) to M1 (pro-inflammatory) macrophages²,³

• In a prospective case-control study, wound management with UBM resulted in a statistically significant decrease in M1 to M2 scores for both diabetic (DM) and non-diabetic (non-DM) patients, which correlated with the rate of wound area reduction²

![M1:M2 score](chart)

**UBM was associated with wound size reduction in both groups:**

- DM SUBJECTS
  - 35% (± 14%)

- NON-DM SUBJECTS
  - 43% (± 18%)

1. Cytal and MicroMatrix provide an environment where the body is more likely to exhibit a higher ratio of M2 (pro-remodeling) to M1 (pro-inflammatory) macrophages²,³

   - **M1**
     - Scarring
     - Pro-inflammatory

   - **M2**
     - Pro-remodeling
     - Anti-inflammatory
ECONOMIC IMPACT
MicroMatrix UBM Particulate and Cytal Wound Matrix offer cost-saving opportunities, backed by peer-reviewed and published data.

Alternative Choice to Conventional Wound Treatment Practices
MicroMatrix and Cytal have been successfully utilized in managing complex wounds, which are often associated with recurrent, costly treatments. A case series, which was focused on the management of a variety of complex wounds, found that NPWT could be more expensive than treatment with MicroMatrix and Cytal.⁸

Using MicroMatrix and Cytal resulted in a lower burden of office visits and less dressing changes compared to the use of NPWT.

Lower Cost Alternative to Flap Procedures
MicroMatrix and Cytal can provide a cost-effective option to reduce donor site morbidity and mitigate the complexities and high costs associated with flap procedures.⁹,¹⁰

Estimated Treatment Costs⁹,¹⁰

<table>
<thead>
<tr>
<th></th>
<th>MicroMatrix®/Cytal®</th>
<th>Free Flap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment Cost</td>
<td>$2,400-$4,000</td>
<td>$34,000-$76,300</td>
</tr>
</tbody>
</table>

Using MicroMatrix and Cytal allowed for complete wound healing, while eliminating additional comorbidities and high costs associated with undergoing a free flap procedure.

Alternative to Amputation
MicroMatrix and Cytal have proven success in limb salvage procedures.⁴-⁶ In addition to potentially improving a patient's quality of life, limb salvage can be a cost-effective solution, compared to amputation.¹¹ The costs of an amputation have been estimated to be 3 times higher than reconstruction, after considering the lifetime costs of the procedures.¹¹

Projected Lifetime Medical Costs¹¹

<table>
<thead>
<tr>
<th></th>
<th>Limb Salvage</th>
<th>Amputation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>$162,282</td>
<td>$509,275</td>
</tr>
</tbody>
</table>

Lifetime healthcare costs for an amputation can be more than 3 times the cost compared to limb salvage.
**APPLICATION GUIDELINES**

**Conduct Initial Wound Inspection**
Assess for clinical signs and symptoms of infection
(purulent exudate, elevated temperature, and/or peripheral induration of edema)

**Infected**

**Infected**

**Manage Infection**

**Not Infected**

**Cleanse Wound & Debride Necrotic Tissue**

**Assess Wound Depth**
Superficial | Partial-Thickness | Full-Thickness

**Select Appropriate Integra Wound Management Device†**

- **MicroMatrix**
  Apply approx. 5 mg/cm², or as needed for complete wound coverage‡

- **Cytal**
  Hydrate and properly orient the device before applying directly to the wound

- **MicroMatrix & Cytal**
  Apply MicroMatrix before Cytal

**Secure with Non-adherent Primary Dressing**

**Ensure Moist Wound Environment**
Apply hydrogel for dry wounds or an absorptive dressing for wet wounds

**Apply Secondary Dressing**

---

**If active infection is present, treat patient to resolve infection prior to device application.**

† The decision of which techniques or products to use in a particular clinical application lies with the physician based on patient profile, particular circumstances surrounding the procedure, and previous clinical experiences.

‡ Based on Cytal® Wound Matrix 1-Layer device particulate mass conversion data on file (TP-0012). Product usage quantity is a recommendation only and does not reflect wound depth, which may adjust product need.
Device Thickness Considerations

The thicker the device, the longer it will persist in the wound bed. Having a longer persistence may be advantageous for deep wounds with more tissue loss. Thicker devices will take longer to resorb and may reduce the need for multiple applications and dressing changes. Thinner devices may be advantageous for superficial wounds, providing conformability with shorter resorption times.

<table>
<thead>
<tr>
<th>Wound Depth</th>
<th>Potential Examples of Wound Types*</th>
<th>Persistence in the Wound Bed</th>
<th>Product</th>
<th>Configuration (Thickness)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficial to deep, full-thickness wounds</td>
<td>Irregular, tunneling, and undermining wounds</td>
<td>Shortest</td>
<td>MicroMatrix</td>
<td>Particulate</td>
</tr>
<tr>
<td>Superficial to partial-thickness wounds</td>
<td>Donor site repairs</td>
<td></td>
<td>Cytal Wound Matrix</td>
<td>1-Layer Sheet</td>
</tr>
<tr>
<td>Deep, partial-thickness wounds and second-degree burns</td>
<td>Surgical resection</td>
<td></td>
<td>Cytal Wound Matrix</td>
<td>2-Layer Sheet</td>
</tr>
<tr>
<td>Full-thickness wounds</td>
<td>Traumatic wounds with exposed bone, tendon, hardware</td>
<td></td>
<td>Cytal Wound Matrix</td>
<td>3-Layer Sheet</td>
</tr>
<tr>
<td>Full-thickness wounds</td>
<td>Stage III &amp; IV pressure injuries with exposed avascular structures</td>
<td>Longest</td>
<td>Cytal Wound Matrix</td>
<td>6-Layer Sheet</td>
</tr>
</tbody>
</table>

* Refer to the approved device labeling IFU (instructions for use) for the full list of wound indications. The list of potential examples of wound types in the chart above is for guidance; however, it is the responsibility of the treating healthcare provider to determine which configuration(s) are ultimately used based upon his/her medical judgment.

Tip

When using concomitantly, apply MicroMatrix before you apply sheet devices.†

MicroMatrix will fit into irregular, tunneling, and undermining wound bed surfaces, and resorb faster than the Cytal sheet device.

### Resorption Times†

<table>
<thead>
<tr>
<th>Wound depth</th>
<th>Resorption time</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MicroMatrix</strong></td>
<td></td>
</tr>
<tr>
<td>20 mg - 1,000 mg</td>
<td>Approximately 24 - 36 hours</td>
</tr>
<tr>
<td><strong>Cytal Wound Matrix</strong></td>
<td></td>
</tr>
<tr>
<td>Cytal 1-Layer</td>
<td>Approximately 4 - 6 days</td>
</tr>
<tr>
<td>Cytal 2-Layer</td>
<td>Approximately 4 - 6 days</td>
</tr>
<tr>
<td>Cytal 3-Layer</td>
<td>Approximately 10 days</td>
</tr>
<tr>
<td>Cytal 6-Layer</td>
<td>Approximately 14 days</td>
</tr>
</tbody>
</table>

† Integra Bilayer Wound Matrix, Integra Meshed Bilayer Wound Matrix, Integra Matrix Wound Dressing, Integra Wound Matrix Thin Skin, Cytal Wound Matrix, PrIMatrix Dermal Repair Scaffold
CASE STUDY 1 - HIDRADENITIS SUPPURATIVA

Case study and pictures courtesy Paul Anthony Del Prado, MD, Arizona

Application of MicroMatrix and Cytal Wound Matrix 2-Layer | Full closure without the need for a skin graft or flap

Initial Case Presentation
Patient presented with hidradenitis suppurativa of the right axila. The affected tissue was resected creating a $7 \times 4$ cm wound.

Methods
Following resection, MicroMatrix and Cytal Wound Matrix 2-Layer were applied.

After two weeks, the devices were fully incorporated into the wound. There was notable remodeling in the wound bed with visible vascularized tissue and re-epithelialization.

Six weeks following product application there was continued re-epithelialization to an even wound bed.

Outcomes
Full wound closure was achieved without the need for a skin graft or flap.

A. Initial wound presentation. Resection of affected tissue.
B. Application of MicroMatrix and Cytal Wound Matrix 2-Layer.
C. Two weeks following MicroMatrix and Cytal application.
D. Six weeks following product application.
E. Follow up at nine months demonstrating full closure.
CASE STUDY 2 - OPEN ABDOMEN

Case study and pictures courtesy of Harrison Cotler, MD, New Jersey

Application of MicroMatrix and Cytal Wound Matrix 2-Layer | Wound closure via secondary intention

Initial Case Presentation
Patient presented with open abdomen resulting from previous hernia repair with biosynthetic mesh and removal of colostomy. Initial wound measured 15 × 30 cm.

Methods
MicroMatrix (6,000 mg) and several 10 × 15 cm Cytal Wound Matrix 2-Layer devices were applied over exposed mesh.

Most product had remodeled by week two at which point any residual product was lightly washed out. MicroMatrix (2,000 mg) and Cytal Wound Matrix 2-Layer were re-applied. At week three an additional 1,000 mg MicroMatrix was applied.

Four weeks following initial application the product had fully remodeled and there was significant new tissue deposition in the wound bed.

Outcomes
There was significant wound size reduction and new tissue deposition 6 weeks following initial application. No additional product was applied, and wound was allowed to close via secondary intention.

B. Two weeks following initial application, most product had resolved. MicroMatrix and Cytal 2-Layer were re-applied.
C. Four weeks following initial MicroMatrix and Cytal application.
D. Six weeks following initial application. Wound continued to progress to closure via secondary intention.
CASE STUDY 3 - OPEN ABDOMEN RESULTING FROM NECROTIZING SOFT TISSUE INFECTION (NSTI)
Case study and pictures courtesy of Harrison Cotler, MD, New Jersey

Application of MicroMatrix and Cytal Wound Matrix 3-Layer Large Area Wound Devices | Wound closure via secondary intention

**Initial Case Presentation**

Patient presented with an incarcerated Incisional hernia with a necrotizing soft tissue infection (NSTI). The wound was thoroughly debrided to remove necrotic tissue.

**Methods**

Following debridement MicroMatrix (6,000 mg) was applied in combination with 16 × 35 cm Cytal Wound Matrix 3-Layer large area wound devices. Additional MicroMatrix was applied one week later.

One month following initial application the product had fully remodeled and there was significant new tissue deposition in the wound bed.

**Outcomes**

Seven weeks following initial application the wound had significantly reduced in size. Wound was allowed to close via secondary intention.

A. Initial wound presentation. Incarcerated incisional hernia with NSTI.
B. Application of MicroMatrix and Cytal Wound Matrix 3-Layer large area wound devices.
C. One month following initial application of MicroMatrix and Cytal 3-Layer.
D. Follow-up 7 weeks after initial application, significant reduction in wound size. Wound continued to progress to full closure via secondary intention.
CASE STUDY 4 - NECROTIZING SOFT TISSUE INFECTION (NSTI)

Case study and pictures courtesy of Nir Hus, MD, Florida

Application of MicroMatrix and Cytal Wound Matrix 2-Layer | Closure via secondary intention 3.5 months following initial application

Initial Case Presentation
A 34-year-old female patient presented with a necrotizing soft tissue infection and an incidental left inguinal hernia. The patient was morbidly obese and had uncontrolled diabetes.

Two serial sharp debridements were performed to control the infection before product application.

Methods
Following final debridement, MicroMatrix and Cytal Wound Matrix 2-Layer were applied.

The patient remained in the hospital for 10 days after which she was discharged to a nursing home with hospital visits every 7-10 days for reapplication for a total of 3 applications.

Eight weeks following initial application the devices had completely remodeled and were replaced with healthy vascularized tissue up to the level of the skin.

Outcomes
Full wound closure at 3.5 months following 3 applications of MicroMatirx and Cytal Wound Matrix 2-Layer devices.

A. Wound presentation following serial debridements. Following final debridment MicroMatrix and Cytal Wound Matrix 2-Layer were applied.
B. Two weeks following initial application of MicroMatrix and Cytal Wound Matrix 2-Layer.
C. Eight weeks following initial application.
D. Wound presentation 2.5 and 3.5 months following initial application demonstrating significant wound size reduction.
CASE STUDY 5 - FOURNIER’S GANCRENE OF THE RIGHT GROIN AND RIGHT HEMISCROTUM

Case study and pictures courtesy of Olubayo Tojuola, MD, Texas

Application of MicroMatrix and Cytal Wound Matrix | Discharged day after a single application

**Initial Case Presentation**

A 27-year-old, indigent male patient presented to the emergency room with inguinal pain and swelling. The patient had a history of diabetes mellitus and was morbidly obese. Initial incision and drainage led to detection of peptostreptococcus anaerobius and he was diagnosed with Fournier’s gangrene of the right groin and right hemiscrotum.

The patient was immediately started on antibiotics and transferred to the OR for surgical treatment of the infected area. He underwent debridement of the necrotic tissue, wound washout, and wound dressing.

**Methods**

On day 4, the patient underwent a second debridement. The resulting wound measured approximately 10 × 15 × 11 cm. MicroMatrix and Cytal Wound Matrix 2-layer were applied.

The patient was discharged after five days and seen back in the office for ongoing outpatient wound management. The treating physician continued to manage the patient during follow-up, where Cytal Wound Matrix 1-Layer was applied once weekly for two weeks.

**Outcomes**

Rapid inward vascularized tissue formation negated the need for a skin graft or primary closure procedure. The wound was completely closed at six weeks post-discharge and resulted in minimal scarring to the region at one-year post-op.

---

A. Day four following initial wound debridement. A second debridement of necrotized tissue in the groin and perineum regions was performed prior to MicroMatrix and Cytal Matrix 2-Layer application.
B. MicroMatrix and Cytal Wound Matrix 2-Layer device application.
C. Follow-up at day 15, displaying positive signs of wound healing and closure.
D. One-year post-op follow-up, demonstrating complete wound closure with minimal signs of scarring of affected region.
CASE STUDY 6 - SACRAL PRESSURE ULCER

Case study and pictures courtesy of Harrison Cotler, MD, New Jersey

Application of MicroMatrix and Cytal Wound Matrix 6-Layer | Significant wound size reduction and new tissue deposition on a patient which may otherwise have been a candidate for a diverting ostomy

Initial Case Presentation

83-year-old patient with sacral ulcer was referred to general surgery for diverting colostomy.

The wound was thoroughly debrided prior to device application. Following initial debridement wound was down to the coccyx measuring $8 \times 6 \times 2$ cm.

Methods

MicroMatrix and $7 \times 10$ cm Cytal Wound Matrix 6-Layer were applied following debridement. MicroMatrix was mixed with saline to create a paste for use in tunneling aspects of the wound. Products were reapplied 2 weeks later.

Outcomes

Wound measured $2 \times 2 \times .5$ cm 3 months post-up at which time patient was discharged from rehab facility. Wound care to closure was continued at home. Wound measured $1 \times 1 \times .2$ cm 4 months post op.

A. Initial wound presentation. Following debridement wound measured $8 \ cm \times 6 \ cm \times 2 \ cm$.
B. MicroMatrix and Cytal Wound Matrix 6-Layer device application.
C. Follow-up 3 months post op wound measured $2\times 2\times .5$. Patient was discharged and wound was followed at home for care.
CASE STUDY 7 - PRESSURE ULCER OF THE THIGH

Case study and pictures courtesy of Harrison Cotler, MD, New Jersey

Application of MicroMatrix and Cytal Wound Matrix | Full wound closure via secondary intention

Initial Case Presentation

Patient presented with a pressure wound of the thigh with maggots down to fascia. Following debridement, the wound measured $23 \times 15 \times 7$ cm.

Methods

MicroMatrix (4,000 mg) was applied following initial debridement.

One week following initial application of MicroMatrix, the wound edges appeared healthier with robust vascularized tissue. MicroMatrix (4,000 mg) and $10 \times 15$ cm Cytal Wound Matrix 2-Layer were applied.

Ten days following product application the wound was slightly smaller with improved granulation tissue and wound bed. The wound continued to progress to closure.

Ten weeks following initial application the wound edges had significantly vascularized. MicroMatrix (2,000 mg) and a $10 \times 15$ cm Cytal Wound Matrix 6-Layer were applied over an area of exposed bone.

Outcomes

Full wound closure via secondary intention without the need for a skin graft or flap.

A. Initial wound presentation.
B. Wound following initial MicroMatrix application.
C. Ten days following initial product application.
D. Ten weeks following initial product application. MicroMatrix and Cytal 6-Layer were applied over an area of exposed bone.
E. Follow up at 9 months demonstrating full closure.
CASE STUDY 8 - PILONIDAL CYST
Case study and pictures courtesy of Sasse et al. JSCR 2013. doi:10.1093/jscr/rjt025
Application of MicroMatrix and Cytal Wound Matrix | Full closure 7 weeks post op

Initial Case Presentation
Patient presented with pilonidal cyst. Following wide excision, the wound measured $9 \times 7 \times 4$ cm with depth down to the sacrococcygeal periosteum.

Methods
MicroMatrix (1,000 mg) and Cytal Wound Matrix were applied. Hydrating gel and Xeroform moistened gauze were placed over the graft followed by dry, absorbent gauze. The patient was then seen in the office on a weekly basis until the wound was completely healed. At each visit, the packing was removed and the wound was inspected. Enough product remained in the wound two weeks following initial application so no additional product was applied.

After week three, MicroMatrix (500 mg) and Cytal Wound Matrix 1-Layer were applied during each in-office dressing change. The patient was instructed to avoid full immersion under water, but was encouraged to resume daily activities.

Outcomes
Follow-up 7 weeks post op demonstrates full wound closure. Other wound management options such as a wound vac can be expensive, cumbersome for the patient and are more challenging because of the sacrococcygeal anatomic location near the anus and difficulties achieving a vacuum seal. Flap surgery has been reported to demonstrate good success with a shorter duration of wound healing, but with a significant rate of impaired wound healing and wound infection. In this case MicroMatrix and Cytal Wound Matrix provided a useful alternative without the need for a more invasive flap procedure or use of a VAC.

A. Initial wound following excision of pilonidal cyst.
B. Two weeks following MicroMatrix and Cytal Wound Matrix application.
C. Three weeks following product application.
D. Follow up at seven weeks demonstrating full closure.
### REFERENCES


---

**MicroMatrix**

**Indications:** MicroMatrix is intended for the management of wounds including: partial and full-thickness wounds, pressure ulcers, venous ulcers, diabetic ulcers, chronic vascular ulcers, tunneled/undermined wounds, surgical wounds (donor sites/grafts, post-Moh’s surgery, post-laser surgery, podiatric, wound dehiscence), trauma wounds (abrasions, lacerations, second-degree burns, skin tears), and draining wounds. This device is intended for one-time use.

**Contraindications:**
1. Known sensitivity or allergy to porcine materials.
2. Third-degree burns.

**Warnings:** If active infection is present, treat patient to resolve infection prior to device application. Do not use glass vial if cracked, broken, or otherwise damaged. MicroMatrix is not indicated for treatment of alopecia.

**Precautions:** Do not tap glass vial with metal objects or handle in a way that may cause glass to break and contaminate wound.

---

**Cytal Wound Matrix**

**Indications:** Cytal Wound Matrix is intended for the management of wounds including: partial and full-thickness wounds, pressure ulcers, venous ulcers, diabetic ulcers, chronic vascular ulcers, tunneled/undermined wounds, surgical wounds (donor sites/grafts, post-Moh’s surgery, post-laser surgery, podiatric, wound dehiscence), trauma wounds (abrasions, lacerations, second-degree burns, skin tears), and draining wounds. The device is intended for one-time use.

**Contraindications:**
1. Patients with known sensitivity or allergy to porcine materials.
2. Third-degree burns.

**Warnings:** Exposure to contaminated or infected field can lead to rapid breakdown of device. If active infection is present, treat patient to resolve infection prior to device application. Do not use if cracked, broken, or otherwise damaged.

**Precautions:** Always use aseptic technique when handling device.
### ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Product</th>
<th>Item #</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroMatrix® Micronized Particles</td>
<td>MM0020</td>
<td>20 mg</td>
</tr>
<tr>
<td>MicroMatrix® Micronized Particles</td>
<td>MM0030</td>
<td>30 mg</td>
</tr>
<tr>
<td>MicroMatrix® Micronized Particles</td>
<td>MM0060</td>
<td>60 mg</td>
</tr>
<tr>
<td>MicroMatrix® Micronized Particles</td>
<td>MM0100</td>
<td>100 mg</td>
</tr>
<tr>
<td>MicroMatrix® Micronized Particles, Fine</td>
<td>MM0100F</td>
<td>100 mg</td>
</tr>
<tr>
<td>MicroMatrix® Micronized Particles</td>
<td>MM0200</td>
<td>200 mg</td>
</tr>
<tr>
<td>MicroMatrix® Micronized Particles</td>
<td>MM0500</td>
<td>500 mg</td>
</tr>
<tr>
<td>MicroMatrix® Micronized Particles</td>
<td>MM1000</td>
<td>1000 mg</td>
</tr>
<tr>
<td>Cytal® Wound Matrix 1-Layer</td>
<td>WS0303</td>
<td>3 × 3.5 cm</td>
</tr>
<tr>
<td>Cytal® Wound Matrix 1-Layer</td>
<td>WS0307</td>
<td>3 × 7 cm</td>
</tr>
<tr>
<td>Cytal® Wound Matrix 1-Layer</td>
<td>WS0710</td>
<td>7 × 10 cm</td>
</tr>
<tr>
<td>Cytal® Wound Matrix 1-Layer</td>
<td>WS1015</td>
<td>10 × 15 cm</td>
</tr>
<tr>
<td>Cytal® Wound Matrix 2-Layer</td>
<td>WSM0505</td>
<td>5 × 5 cm</td>
</tr>
<tr>
<td>Cytal® Wound Matrix 2-Layer</td>
<td>WSM0710</td>
<td>7 × 10 cm</td>
</tr>
<tr>
<td>Cytal® Wound Matrix 2-Layer</td>
<td>WSM1015</td>
<td>10 × 15 cm</td>
</tr>
<tr>
<td>Cytal® Wound Matrix 3-Layer</td>
<td>WSR0505</td>
<td>5 × 5 cm</td>
</tr>
<tr>
<td>Cytal® Wound Matrix 3-Layer</td>
<td>WSR0710</td>
<td>7 × 10 cm</td>
</tr>
<tr>
<td>Cytal® Wound Matrix 3-Layer</td>
<td>WSR1015</td>
<td>10 × 15 cm</td>
</tr>
<tr>
<td>Cytal® Wound Matrix 3-Layer</td>
<td>WSR1625</td>
<td>16 × 25 cm</td>
</tr>
<tr>
<td>Cytal® Wound Matrix 3-Layer</td>
<td>WSR1635</td>
<td>16 × 35 cm</td>
</tr>
<tr>
<td>Cytal® Wound Matrix 6-Layer</td>
<td>WSX0505</td>
<td>5 × 5 cm</td>
</tr>
<tr>
<td>Cytal® Wound Matrix 6-Layer</td>
<td>WSX0710</td>
<td>7 × 10 cm</td>
</tr>
<tr>
<td>Cytal® Wound Matrix 6-Layer</td>
<td>WSX1015</td>
<td>10 × 15 cm</td>
</tr>
</tbody>
</table>